The uncertainty principle and hypoelliptic operators
نویسندگان
چکیده
منابع مشابه
Generalized Uncertainty Principle and Self-Adjoint Operators
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Newmann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamil...
متن کاملSpectral Properties of Hypoelliptic Operators
We study hypoelliptic operators with polynomially bounded coefficients that are of the form K = ∑m i=1 X i Xi + X0 + f , where the Xj denote first order differential operators, f is a function with at most polynomial growth, and X i denotes the formal adjoint of Xi in L. For any ε > 0 we show that an inequality of the form ‖u‖δ,δ ≤ C(‖u‖0,ε + ‖(K + iy)u‖0,0) holds for suitable δ and C which are...
متن کاملSemilinear Hypoelliptic Differential Operators with Multiple Characteristics
In this paper we consider the regularity of solutions of semilinear differential equations principal parts of which consist of linear polynomial operators constructed from real vector fields. Based on the study of fine properties of the principal linear parts we then obtain the regularity of solutions of the nonlinear equations. Some results obtained in this article are also new in the frame of...
متن کاملH∞-calculus for Hypoelliptic Pseudodifferential Operators
We establish the existence of a bounded H∞-calculus for a large class of hypoelliptic pseudodifferential operators on R and closed manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1987
ISSN: 0034-5318
DOI: 10.2977/prims/1195175866